Microcarrier Culture for Efficient Expansion and Osteogenic Differentiation of Human Fetal Mesenchymal Stem Cells
نویسندگان
چکیده
Stirred microcarrier (MC) culture has been suggested as the method of choice for supplying large volumes of mesenchymal stem cells (MSCs) for bone tissue engineering. In this study, we show that in addition to the improvement in cell expansion capacity, MSCs propagated and harvested from MC culture also demonstrate higher osteogenic potency when differentiated in vivo or in vitro in three-dimensional (3D) scaffold cultures as compared with traditional monolayer (MNL) cultures. Cytodex 3 microcarrier-expanded human fetal MSC (hfMSC) cultures (MC-hfMSCs) achieved 12- to 16-fold expansion efficiency (6×10(5)-8×10(5) cells/mL) compared to 4- to 6-fold (1.2×10(5)-1.8×10(5) cells/mL) achieved by traditional MNL-expanded hfMSC culture (MNL-hfMSCs; p<0.05). Both MC-hfMSCs and MNL-hfMSCs maintained similar colony-forming capacity, doubling times, and immunophenotype postexpansion. However, when differentiated under in vitro two-dimensional (2D) osteogenic conditions, MC-hfMSCs exhibited a 45-fold reduction in alkaline phosphatase level and a 37.5% decrease in calcium deposition compared with MNL-hfMSCs (p<0.05). Surprisingly, when MC-hfMSCs and MNL-hfMSCs were seeded on 3D macroporous scaffold culture or subcutaneously implanted into nonobese diabetic/severe combined immunodeficient mice, MC-hfMSCs deposited 63.5% (p<0.05) more calcium and formed 47.2% (p<0.05) more bone volume, respectively. These results suggest that the mode of hfMSC growth in the expansion phase affects the osteogenic potential of hfMSCs differently in various differentiation platforms. In conclusion, MC cultures are advantageous over MNL cultures in bone tissue engineering because MC-hfMSCs have improved cell expansion capacity and exhibit higher osteogenic potential than MNL-hfMSCs when seeded in vitro into 3D scaffolds or implanted in vivo.
منابع مشابه
Ex vivo Expansion and Differentiation of Mesenchymal Stem Cells from Goat Bone Marrow
Objective(s) Mesenchymal stem cells (MSCs) from large animals as goat which is genetically more closely related to human have rarely been gained attentions. The present study tried to isolate and characterize MSCs from goat bone marrow. Materials and Methods Fibroblastic cells appeared in goat marrow cell culture were expanded through several subcultures. Passaged-3 cells were then different...
متن کاملEnhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers
BACKGROUND Mesenchymal stem cells (MSCs) are of great interest in bone regenerative medicine due to their osteogenic potential and trophic effects. However, challenges to large-scale production of MSCs can hinder the translation of MSC therapies. 3D Microcarrier (MC)-based MSC culture presents a scalable and cost-effective alternative to conventional methods of expansion in 2D monolayers. Furth...
متن کاملتاثیر Chitosan بر ویژگیهای استئوژنیک سلولهای بنیادی مزانشیمال پالپ دندان شیری
Background and Aims: The exfoliated human deciduous tooth contains multipotent stem cells [Stem Cell from Human Exfoliated Deciduous tooth (SHED)] that identified to be a population of highly proliferative and clonogenic. These cells are capable of differentiating into a variety of cell types including osteoblast/osteocyte, adiopcyte, chondrocyte and neural cell. The aim of this study was to ev...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملBiological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow
Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...
متن کامل